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CHAPTER 1 

INTRODUCTION 

This study explores the idea of incommensurability through its multifarious 

relation to ancient Greek culture, mathematical concepts and musical theories, and 

demonstrates how incommensurability applies towards interval division in my 

composition Anomaly, for solo flute with electronics and ensemble.  The problem of 

incommensurability originated in ancient Greece, specifically in the number-cult of 

Pythagoras.  The term itself refers to the discovery of the first irrational number, the 

square root of two, in a world that knew only whole numbers.  Incommensurability is the 

point of tension and the cognitive gap between two distinctly different ways of viewing 

the world.  In what comes down to us through history as both math and myth, 

incommensurability is at once revolutionary, controversial, and troubling; not the least in 

part in that it concerns an alleged murder and cover up. 

More recently, philosopher Thomas Kuhn borrowed the idea of 

incommensurability when speaking of historical scientific discoveries: “The normal-

scientific tradition that emerges from a scientific revolution is not only incompatible but 

often actually incommensurable with that which has gone before.”1  In ancient Greece, 

the paradigm of mathematical thought that included irrational numbers were 

                                                
1. Thomas Kuhn, The Structure of Scientific Revolutions (Chicago: University of 

Chicago Press, 1996), 103. 
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fundamentally in conflict with the paradigm that dismissed them.  This conflict centered 

on the discovery of the first irrational number, an event that defied explanation by one 

paradigm, and provided the premise for the other paradigm’s existence.  Such events that 

violate the expected and ultimately cause the viewpoint of a group of people to shift are 

called anomalies. 

Apart from the legend and the philosophy, the mathematical implication of the 

incommensurability of the square root of two is inextricably linked with the search for a 

proper division of the octave.  This paper will examine different methods proposed by the 

Pythagoreans to divide the octave, and will show how one of the options they discarded 

provides the impetus for my composition Anomaly.  The purpose of presenting the 

subjects in this paper in relation to Anomaly is to demonstrate that the abandoned 

theoretical division can be musically viable. 

To this end, I will present a thorough description of the concept and techniques 

used in composing Anomaly with a particular focus on the invented scales and intervals 

resulting from irrational number ratios.  I have also chosen to align Anomaly with the 

spectral movement, associated with composers Gérard Grisey and Tristan Murail.  The 

spectral focus on finding musical order in the nature of sound itself is closely tied to the 

Pythagorean understanding of music and number.  I will draw comparison between 

Anomaly and parts of Grisey’s spectral masterpiece Les éspaces acoustiques, 

concentrating on the use of overtones and the treatment of time elements in both pieces. 

The conclusions drawn from this study converge on the theory of the division of 

the octave.  The solutions to this problem developed in ancient Greece shaped the 

musical heritage of the West for the next two millennia.  I will show how the techniques 
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demonstrated in Anomaly explore an alternate paradigm to the age-old questions of 

dividing frequency space. 
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CHAPTER 2 

INCOMMENSURABILITY IN ANCIENT GREECE 

Math, Myth, and Mysticism 

 The origins of Western musical tradition and the problem of dividing intervallic 

spaces begins in ancient Greece with a group of thinkers associated with Pythagoras of 

Samos.  While none of his writings remain, Pythagoras’s teachings greatly influenced 

philosophic, religious, and mathematical thought beginning in the second half of the sixth 

century BCE.1  The surviving sources that make reference to the Pythagorean traditions 

are fragments from Archytas, Plato’s Timaeus, Aristotle’s Metaphysics, Aristoxenus’s 

Elementa Harmonica, the Euclidean Sectio Canonis, Nicomachus’s Enchiridion, and 

Ptolemy’s Harmonics.  In and among the content from these sources we find 

mathematical observations and explanations, doubtful tales of inspiration and bloodshed, 

and the spiritualization of numbers and numerology. These writings also contain the first 

attempts at what can imperfectly be called music theory,2 central to which is the division 

of string lengths on a monochord to produce intervals. 

                                                
1. André Barbera, “Pythagoras,” in The New Grove Dictionary of Music and 

Musicians, 2nd ed. (London: Macmillan, 2001), 20:642. 
 
2. Thomas J. Mathiesen et al., “Greece, Ancient,” in The New Grove Dictionary 

of Music and Musicians, 2nd ed. (London: Macmillan, 2001), 10:335. 
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Following an overview of some important concepts relating to Pythagorean 

thought, this study will explore different solutions the ancient Greeks proposed for the 

division of the octave. 

Background on the Pythagorean Cult 

Given the silence of the master himself, the scarcity of writings by his early 

followers, and the secrecy of their movement, it is difficult to explain or even summarize 

the mid-sixth-century school of thought built around Pythagoras of Samos.  What is 

factual about Pythagoras the man is difficult to ascertain given the lore that grew up 

around him in the centuries after his death.  A philosopher and teacher, he fostered a 

school and religious sect that flourished for a while in Croton (in southern Italy) before 

being chased out of the city.  Afterward, Pythagoras was said to have finished his days in 

Metapontum (on the southern coast of Italy).3 

The cult built around Pythagoras was secretive and selective.  Their beliefs and 

philosophical holdings generally concern observable science and mathematics with an 

emphasis on whole numbers.  Pythagoras himself supposedly quipped the phrase, “All is 

number,”4 and though scholars argue whether or not this is true, later Pythagoreans and 

thinkers influenced by him do, in fact, uphold a type of divinity associated with number.  

In a passage ascribed to Philolaus in the fourth century BCE, Philolaus confirms the 

centrality of number in Pythagorean thought when he says, “All things which can be 

                                                
3. Iamblicus, Life of Pythagoras, or Pythagoric Life, trans. Thomas Taylor 

(London: J. M. Watkins, 1818), 128. 
 
4. Leonid Ja. Zhmud, “All is Number? Basic Doctrine of Pythagoreanism 

Reconsidered,” Phronesis 34, no. 3 (1989): 270–1. 
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known have number; for it is not possible that without number anything can either be 

conceived or known.”5  Plato’s famed creation of the soul of the universe in 

the Timaeus describes with esoteric detail the precise numerical relationships built into 

the universe.6  Aristotle’s mid-fourth-century BCE description of the Pythagoreans states 

that of their most important principles, “numbers are by nature the first, and in numbers 

they seemed to see many resemblances to the things that exist and come into being.”7  In 

Aristotle’s view, the Pythagoreans interpreted the elemental truths of the natural world as 

related to numbers and even supposed that the heavenly realms were composed of 

musical scale and a number.8 

To further explain the role of number in this view of the world, it is necessary to 

examine the Pythagorean understanding of proportion and ratio.  Aristides Quintilianus, 

in a retrospective examination of the Pythagorean tradition, speaks of a creator: 

Call him Ratio or Unit, or, as men or divine wisdom have done, Unitary Ratio, 
revealing by the first title how he harmonizes and orders everything, and by the 
second how he has arrested the multiplicity and diversity of things, and holds 
them together in one with unbreakable bonds.9 

 

                                                
5. Ioannis Stobaei, Eclogarum, trans. August Meineke (Leipzig: Teubner, 1860), 

1:21. 
 
6. Plato, Timaeus, in Source Readings in Music History, rev. ed., ed. Oliver 

Strunk (New York: Norton, 1998), 20–3. 
 
7. Aristotle, Metaphysics, trans. W. D. Ross (New York: Oxford University Press, 

1924), 1:986a. 
 
8. Ibid. 
 
9. Aristides Quintilianus, De Musica, in Greek Musical Writings, ed. Andrew 

Barker (Cambridge: Cambridge University Press, 1989), 2:402. 
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The concept of ratio is viewed, at least by the late Pythagoreans, as being able to describe 

a type of divine ordering.  These Pythagoreans extensively described and categorized 

ratios based on their numerical relationships.  Ratios like 1:2, 1:3, and 1:4, for example, 

were called multiples, while ratios whose terms differed by one like 2:3, 3:4, and 4:5 

were called epimores.10  Assessments made about these ratios determined their beauty, 

perfection, and amount of reverence due. 

One grouping of highly revered numbers among the Pythagoreans were the first 

four numbers in the integer series, otherwise known as the Tetrad.11  They felt that these 

four numbers had mathematical properties unique among all integers.  The first number 

added to the second produces the third (1 + 2 = 3).  The second number added to itself 

produces its square (2 + 2 = 22).  Finally, all four numbers added together result in 10, a 

type of unity in a base-10, or decimal, number system.  The Tetrad also represented the 

organization of spatial dimensions from a point, to a line (the distance between two 

points), to a plane (the area between three points), to three-dimensional space (the 

volume between 4 points).  Upon this basis, many formative mathematical and musical 

observations were made, chief among them being the Pythagorean Theorem. 

The Square Root of Two 

The Pythagorean Theorem is a mathematical description of the proportional 

relationships between the sides and the hypotenuse of a right triangle.  The proof for this 

                                                
10. Richard L. Crocker, “Pythagorean Mathematics and Music (I),” The Journal 

of Aesthetics and Art Criticism 22, no. 2 (Winter 1963): 191. 
 
11. André Barbera, “Arithmetic and Geometric Divisions of the Tetrachord,” 

Journal of Music Theory 21, no. 2 (Fall 1977): 294. 
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involved calculating the area of squares made from each side of the triangle and 

comparing it to the square made by the hypotenuse (see Figure 1).  These areas were 

shown to equal each other and, hence the formula a2 + b2 = c2. 

 
 
 

 
 
FIGURE 1.  The proof of the Pythagorean Theorem. 
 
 
 
 

Another unique property of the Tetrad, as put forth by the Pythagoreans, was that 

the last two numbers when squared and added together produced the square of the next 

number (32 + 42 = 52).  This is the smallest possible integer example of the Pythagorean 

Theorem.  Before long, it was discovered that the Theorem would not work for all 

numbers in the arena of arithmetic.  A right triangle having sides a length of one would 

produce a hypotenuse whose length was the square root of two (12 + 12 = x2 ; x = !2).  

Because these early mathematicians had no concept for this type of number, the practice 

of that day would involve finding a larger number ratio to represent the fractional value.  
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For example, if the ratio was 1:1.5, the representational ratio could be enlarged and 

converted to 2:3.  This, however, was soon found to be impossible with the square root of 

two.  No ratio could represent its value, and it was therefore termed irrational, meaning 

without ratio.12  Still, the fact of the matter remained that the hypotenuse was a discrete 

length that, if nothing else, could be represented visually.  With the discovery of 

irrational numbers, the field of geometry was born.13 

The discovery of the irrationality, or the incommensurability of the square root of 

two, expresses the fact that not every distance can be measured in whole numbers, or 

even fractions of whole numbers.  It has been called by Kurt von Fritz, “one of the most 

amazing and far reaching accomplishments of early Greek mathematics.”14  This grates 

against a core philosophy of the early Pythagoreans, noted by historians who called its 

discovery a “véritable scandale logique.”15  The unfortunate man linked with this 

discovery is a Pythagorean philosopher named Hippasus of Metapontum. It is to his 

account that we must turn to next. 

Hippasus of Metapontum 

According to many of the earliest sources, Hippasus of Metapontum made the 

discovery of incommensurability. Hippasus was a contemporary and pupil of Pythagoras 

                                                
12. Thomas Heath, A History of Greek Mathematics (New York: Oxford 

University Press, 1921), 1:91. 
 
13. Ibid., 90. 
 
14. Kurt von Fritz, “The Discovery of Incommensurability by Hippasus of 

Metapontum,” The Annals of Mathematics (2nd series) 46, no. 2 (April 1945): 242. 
 
15. Paul Tannery, Pour l’histoire de la science hellène (Paris: Félix Alcan, 1887), 

202. 
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himself.  What little we know of him comes 800 years later in the writings of Iamblichus 

of Chalcis, a fourth-century neo-Platonist.16  In Iamblichus, Hippasus is said to be “one of 

the Pythagoreans, but that in consequence of having divulged and described the method 

of forming a sphere from twelve pentagons, he perished in the sea, as an impious 

person.”17  Though he is speaking of another secret revealed, he later connects this with 

He who first divulged the theory of commensurable and incommensurable 
quantities, to those who were unworthy to receive it, was so hated by the 
Pythagoreans that they not only expelled him from their common association  
. . . but also constructed a tomb for him . . . he perished in the sea, as an impious 
person . . . who delivered the method of inscribing in a sphere the dodecædron.18 

 
In the scholium on the beginning of Book 10 of Euclid’s Elements, Proclus writes, “the 

first of the Pythagoreans who made public the investigation of these matters [that is, 

incommensurability] perished in a shipwreck.”19 

Modern authors have conjectured about the Pythagorean’s anger for publically 

revealing the secret of incommensurability and the direct connection with a death at sea.  

Charles Seife gives an account that demonstrates the extent to which the myth has 

become sensationalized: 

Hippasus of Metapontum stood on the deck preparing to die.  Around him stood 
the members of a cult, a secret brotherhood that he had betrayed.  Hippasus had 
revealed a secret that was deadly to the Greek way of thinking, a secret that 
threatened to undermine the entire philosophy that the brotherhood had struggled 
to build.  For revealing that secret, the great Pythagoras himself sentenced 

                                                
16. Iamblicus, i–ix. 
 
17. Ibid., 47–8. 
 
18. Ibid., 126. 
 
19. Thomas Heath, The Thirteen Books of Euclid’s Elements (Cambridge: 

Cambridge University Press, 1908), 3:1. 
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Hippasus to death by drowning.  To protect their number-philosophy, the cult 
would kill.20 
 

While the repercussions of this revelation by Hippasus may come down to us 

exaggerated, or frankly untrue, what is true is that science and mathematics moved on.  

The discovery of the incommensurability of the square root of two may have challenged 

some sacred beliefs for the early Pythagoreans, but it eventually made possible the study 

of geometry, and in particular in the work of Euclid. 

Application in Greek Music Theory 

The importance of whole number ratios to the Pythagoreans in their 

understanding of philosophy, mathematics, and even the harmony of the universe itself is 

clear.  However, the relationship of these ideas to music is not immediately apparent.  

These philosophers and scientists were not interested in musical discovery for its own 

sake, but only in its “paradigmatic and mimetic”21 reflection of number.  Ratios can 

represent intervals, and intervals can be objectively evaluated and classified based on 

their ratio.  The two basic classifications are consonant intervals and dissonant intervals,22 

discussed in detail below.  Finally, due to the reverence given the Tetrad, the 

Pythagoreans must have believed that the interval of an octave was intrinsically very 

                                                
 
20. Charles Seife, Zero: The Biography of a Dangerous Idea (New York: 

Penguin, 2000), 26. 
 
21. Mathiesen, 10:335. 
 
22. Euclid, Sectio Canonis, in Greek Musical Writings, ed. Andrew Barker 

(Cambridge: Cambridge University Press, 1989), 2:193. 
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valuable.23  The pains to which efforts were made to find a suitable way to divide that 

space testifies to this fact.  Following an overview of some important music theory 

concepts relating to Pythagorean thought, we will explore different solutions the ancient 

Greeks proposed for the division of the octave. 

Lengths of String 

The invention of the simple, single-string monochord used for scientific and 

teaching purposes is credited to Pythagoras.24  A moveable bridge set beneath a fixed 

string allowed one to divide the string into two different lengths.  The lengths could be 

equal, having a ratio of 1:1, resulting in the same pitch when plucked.  A string twice as 

long as the other, having a ratio of 1:2, would create the interval of an octave.  A ratio of 

1:3 results in a twelfth, and 1:4 gives us the double octave.  Figure 2 lists some simple 

ratios and their resulting intervals. 

 
 
 

 
 
FIGURE 2.  A list of simple ratios with their corresponding musical intervals. 
 
 

                                                
23. Ptolemy, Harmonics, in Greek Musical Writings, ed. Andrew Barker 

(Cambridge: Cambridge University Press, 1989), 2:285. 
 
24. Cecil Adkins, “Monochord,” in The New Grove Dictionary of Music and 

Musicians, 2nd ed. (London: Macmillan, 2001), 17:2–4.  
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The methodology of these monochord experiments was unlike our understanding 

of the overtone series, which would have been foreign to the ancient Greeks: the smaller 

number in the ratio describes the shorter of the two string lengths, and thus the higher 

pitch.  For example, in the ratio 2:3, the string length represented by 2 is the shorter, 

higher member of the perfect fifth. 

Early Pythagoreans grouped intervals into a short list of consonant intervals, and a 

much larger list of dissonant intervals.  This evaluation was based on their representative 

ratio and the inherent perfection or imperfection of the numbers involved.  Included in 

the list of consonant intervals were the octave (1:2), the perfect twelfth (1:3), double 

octave (1:4), the perfect fifth (2:3), and the perfect fourth (3:4).  Every other interval was 

relegated to the list of dissonant intervals.25  The reason for this was sound: as explained 

above, the fascinating relationships found in the Tetrad, or the first four integers, fostered 

reverence for anything composed from their stock.  The small, whole number ratios of 

these intervals bestowed on them the mark of perfection. 

The octave, in particular, appears to have been held in quite high regard by 

Plato,26 Nicomachus,27 and Ptolemy.28  Several reasons support this: Firstly, the octave’s 

ratio consists of the first two numbers in the integer series.  Outside of the unison, this 

                                                
25. Crocker, “Pythagorean Mathematics and Music (I),” 192. 
 
26. Plato, 20–3. 
 
27. Nicomachus of Gerasa, Enchiridion, in Greek Musical Writings, ed. Andrew 

Barker (Cambridge: Cambridge University Press, 1989), 2:261. 
 
28. Ptolemy, 2:285. 
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makes it the first, and most perfect, interval.  Ptolemy calls the octave, “the finest of the 

concords,”29 that is, it sounds the most consonant compared to any other interval.  In 

Plato’s creation of the universal soul, the first act of the creator is to take, “one portion 

from the whole, and next a portion double of this,”30 essentially describing a ratio of 1:2.  

The octave also has the special property of being formed by stacking two consonances: 

the perfect fifth (2:3) and the perfect fourth (3:4).  Described in ratios, their combined 

ratio of 2:3:4 can be reduced to 1:2.  This is unique in the integer series, being the only 

case where two consecutive epimore ratios (2:3 and 3:4) create the ratio directly before 

them (1:2).31  It therefore makes sense that the Pythagoreans would use the octave as a 

measuring rod, a harmonic reference point, and an interval from which to generate new 

intervals. 

The Arithmetic and Harmonic Mean 

The method of locating a central point between two given points is a distinctly 

Pythagorean idea.32  There are many procedures by which to find an average, or mean 

between two given numbers, which can also be applied to the division of intervallic 

spaces.  The simplest is the arithmetic mean, by which each term in a ratio succeeds the 

next by the same amount.  The description above of stacking a perfect fifth (2:3) and 

perfect fourth (3:4) to create an octave (1:2) is the prime example of the arithmetic mean.  

                                                
29. Ibid. 
 
30. Plato, 20. 
 
31. Crocker, “Pythagorean Mathematics and Music (I),” 193. 
 
32. “Archytas of Tarentum,” in Ancilla to the Pre-Socratic Philosophers, trans. 

Kathleen Freeman (Cambridge: Harvard University Press, 1983), 79–80. 
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When combined to create the ratio 2:3:4, the central term is the arithmetic mean between 

the two outer terms because each term is greater than the last by 1.  Thus the arithmetic 

mean between an octave is a perfect fourth above the lower member of the octave (see 

Figure 3). 

 
 
 

 
 
FIGURE 3.  An illustration of the arithmetic mean. 
 
 
 
 

This division is not an exact halving function.  The lower interval is smaller than 

the upper.  Despite that, both resulting internal intervals are familiar consonances and 

they create a useful model for the division of the octave, however imperfect. 

The practical implication of the arithmetic division was that it was ultimately 

displeasing to the ear.  The unmusical nature of the division is likely the resulting fourth 

below the fifth.33  One solution was to flip the order of the arithmetically derived 

intervals, putting the fourth on top of the fifth.  The ratio between the intervals remain the 

same, aside from the order.  At first this was named the subcontrary, and later the 

                                                
33. Richard L. Crocker, “Pythagorean Mathematics and Music (II),” The Journal 

of Aesthetics and Art Criticism 22, no. 3 (Spring 1964): 328. 
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harmonic mean, no doubt due to its musical usefulness.34  The arithmetic and harmonic 

means can be compared to each other using the ratio 6:12 to represent an octave as seen 

below (see Figure 4). 

The harmonic mean represents the solution to the octave-division problem that 

proved the most desirable.  The perfect fifth below the fourth forms a structure that 

provides a stable backbone for ancient Greek music and hints at the future developments 

of Western music. 

 
 
 

 
 
FIGURE 4.  An illustration of the arithmetic mean compared to the harmonic mean. 
 
 
 
 
The Geometric Mean 

One Pythagorean mean yet remains.  The geometric mean, as defined by 

Archytas, “is when the second is to the third as the first is to the second.”35  In other 

words, the proportion between the terms of a compound ratio is the same.  For example, 
                                                

34. “Archytas of Tarentum,” 79–80. 
 
35. Ibid., 80. 
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in the ratio 4:6:9, the proportion between the first two terms (4:6) and the following two 

terms (6:9) is the same (2:3).  Therefore, the interval of a major ninth (4:9) has a 

geometric mean dividing the space equally by a perfect fifth above the lower term, or a 

perfect fifth below the upper term. 

To further illustrate the concept, we can divide the interval of a double octave 

(1:4).  The method of finding the geometric mean between the interval is directly related 

with the Pythagorean Theorem as detailed above, whereby the mean derives its name.  As 

in the Pythagorean Theorem, the square of the lowest term added to the square of the 

mean should equal the square of the highest term (see Figure 5).  Another, more direct 

way of calculating the geometric mean between two terms is to take the square root of 

their product (see Figure 6).  Either method results in the compound ratio 1:2:4 where it 

has the same proportions between each of its sets of terms (1:2). 

 
 
 
12 + x2 = 42 ; x = 2 
 
FIGURE 5.  Finding the geometric mean between 1 and 4 using the Pythagorean 
Theorem. 
 
 
 
 
!(1 · 4) = x ; x = 2 
 
FIGURE 6.  Finding the geometric mean between 1 and 4 by the square root of their 
product. 
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Comparing Means 

A comparison of the three types of means can be made when the double octave is 

represented by the ratio 10:40 (see Figure 7).  The resulting intervals set on arbitrary 

pitches show that the arithmetic mean creates a larger interval on the top, the harmonic 

mean creates a larger interval on the bottom, and the geometric mean evenly divides the 

space. 

 
 

 
 
FIGURE 7.  A comparison of the three different means. 
 
 
 
 

That the geometric mean most evenly divides the intervals of the octave or 

compound octave, and that the arithmetic and harmonic means are approximations, is 

clear.  The reason that the early Pythagoreans choose to use the harmonic mean and not 

the geometric motivates this entire preliminary discussion.  As shown above, the space of 

a double octave divides geometrically, yielding a single octave in the middle.  However, 

when the single octave is split by the geometric mean, we encounter the issue of 

incommensurability.  In order for an octave (1:2) to have the same proportions between 

each term, the geometric mean must be the square root of two (see Figure 8).  As in the 
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!(1 · 2) = x ; x = !2 
 
FIGURE 8.  Finding the geometric mean between 1 and 2 by the square root of their 
product. 
 
 
 
 
case of Hippasus’s right triangle with two sides each equaling one unit where the 

hypotenuse can be drawn but not described with integers, the interval can be sounded, but 

it cannot be represented by a whole number ratio.  The interval is therefore defined as 

irrational.  For the reason of incommensurability, the resulting interval, and the division 

of the octave by the geometric mean was abandoned by the Pythagoreans in favor of the 

harmonic mean. 
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CHAPTER 3 

ANOMALY FOR SOLO FLUTE WITH ELECTRONICS AND ENSEMBLE 

General Description 

Anomaly is a single-movement chamber work written for solo flute processed 

with electronics accompanied by a small ensemble.  The ensemble consists of oboe, 

clarinet, horn, trombone, vibraphone, violin, and double bass.  The piece is a quasi-

concerto or concertino given the prominent role of the flute, an idea supported by an 

extended flute solo near the beginning of the work and computer processing of the flute’s 

sound exclusively.  A MIDI-capable keyboard connected to a computer and sound 

reinforcement system captures the live sound of the flute and shifts the flute’s pitch.  In 

essence, the computer processing as a whole can be thought of as an elaborate polyphonic 

pitch shifter, capable of producing accurate, microtonal, flute-like timbres with great 

ease.  By using the flute as the sole source of electronically produced sound, the resulting 

signal processing attempts to augment the sound-creating capabilities of the flute instead 

of simply adding an extra layer of electronic sound.  In the context of the 16-minute 

piece, the flute and electronics play a complex dependent, yet independent roles that will 

require further explanation.  Before exploring that topic, I will examine the way in which 

the harmony of the piece develops in relation to the division of the octave.   
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Division of the Octave 

As discussed above, the division of the span of an octave by the Pythagorean cult 

of ancient Greece inarguably shaped the course of all Western music that followed.  

Solutions to the puzzle then, in the form of the arithmetic and harmonic mean, led to the 

prominence of the perfect fourth and perfect fifth.  The Pythagoreans dismissed the 

geometric mean because it produced an interval that could not be expressed by a whole 

number ratio.  In Anomaly, I reject the Pythagorean solution and embrace the division of 

the octave by the geometric mean as the basis for musical composition. 

Theory 

As explained in Chapter 2, the geometric mean between two lengths of string x 

and y can be found by taking the square root of their product: !(x · y).  In the case of the 

octave where one string is a length of x, and another is "x, the resulting geometric mean 

between the two strings is x · !", an irrational string length.  In intervallic terms, the 

geometric mean between an octave yields a tritone.  In semitones, the tritone between an 

octave divides the space evenly with six semitones on either side (see Figure 9). 

 
 
 

 
 
FIGURE 9.  The geometric mean between the pitches C4 and C5. 
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As of yet, the geometric mean has given up only two primary tones with which to 

work: the root pitch and the tritone away from it.  In order to build harmonies from this 

theoretical basis all of this symmetry and division must be taken a step further: the 

resulting interval from our first division must itself be divided.  Using the geometric 

mean, the division of a tritone consisting of string length x and x · !" results in a length 

of x · 4!".  This produces a tone one minor third above the root pitch, centering it 

between the tritone interval with three semitones on either side (see Figure 10). 

 
 
 

 
 
FIGURE 10.  The geometric mean between pitches C4 and C5, and between pitches C4 
and F!4. 
 
 
 
 

Should the same operation be conducted on the interval of a minor third, the pitch 

produced will fall between a major and minor second on an equal tempered scale.  As 

expected, this so-called neutral second1 will lie equally between the minor third with one 

and a half semitones above and below it (see Figure 11).2  This process could, of course, 

                                                
1. Jan Haluska, The Mathematical Theory of Tone Systems (New York: CRC 

Press, 2003), xxiii. 
 
2. For notational purposes only, this pitch has been frequency-quantized and 

rendered as a quarter-tone flat using this symbol: b. 
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continue past this first microtonal interval and produce smaller, additional intervals 

outside of equal temperament. 

As the process of halving each successive division continues, a set of intervallic 

relationships begin to emerge.  A pattern from a large outer interval down to incredibly 

small microtones defines this set of pitches.  The opening material of Anomaly consists 

almost entirely of these tones with a root note of A.  The resulting pitches from this 

simple division process are A, Bb, C, and E".  Besides the solo flute, the acoustic 

instruments are not asked to produce microtones and the Bb is reconciled here in the 

vibraphone’s first measure as both a B" and a B (see Figure 12).  The choice to “round 

off” the microtones will be further explained below. 

 
 
 

 
 
FIGURE 11.  The geometric mean between pitches C4 and C5, between pitches C4 and 
F!4, and between pitches C4 and E"4. 
 
 
 
 

 
 
FIGURE 12.  Measure 1 of the vibraphone part in Anomaly. 
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Variations in Span 

The genesis of Anomaly lies in the division of the octave by the geometric mean.  

The pitches produced by the process of successively dividing that space, however, are 

eventually limited.  In order to create a more harmonically rich and evolving palette, the 

process must include some variables.  One of those variables is the span of the initial, or 

outer, interval.  This is the largest of the subsequent intervals and the space to be divided, 

from which all following intervals originate.  Thus far, the outer interval has been the 

space of one octave.  This does not remain the case for much of the piece.  In fact, the 

true outer interval of the opening material as discussed above is not an octave, but rather 

a double octave.  The double octave, when divided by the geometric mean, yields a single 

octave.  What follows from that interval has already been detailed above. 

The double octave is the largest space divided in Anomaly.  Intervals like an 

octave plus a major seventh, or an octave plus a minor seventh, all the way down to the 

single octave, form the great majority of the harmonic language.  Every outer interval 

produces its own subset of inner divisions, each with its own character.  The division of 

the outer interval of an octave and a minor sixth, for example, produces a minor seventh, 

followed by a perfect fourth, followed by a subminor third3 (see Figure 13).4   Thus, by 

varying the size of the outer interval, a wide array of harmonic complexity can be 

created. 

                                                
3. Hermann von Helmholtz, On the Sensations of Tone (London: Longman, 

1895), 195. 
 
4. For notational purposes only, this pitch has been frequency-quantized and 

rendered as a quarter-tone sharp using this symbol: #. 
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FIGURE 13.  The resulting pitches from dividing the space of an octave plus a minor 
sixth by the geometric mean. 
 
 
 

Variations in Direction 

So far, a general shape has emerged in terms of interval size.  Starting from the 

largest, outer interval, the resulting divisions in relation to the root pitch produce ever-

decreasing intervals.  To say it another way, the interval size expands the further it gets 

away from the root pitch and contracts the closer it gets to the root pitch.  Another 

variation from the basic division of the octave is to invert this shape by changing the 

direction of the division.  Instead of dividing the outer interval downward towards a root 

pitch, the divisions are made upward toward the higher member of the outer interval.  In 

doing so, the resulting intervals from an outer interval of a double octave would be an 

octave, an augmented eleventh, followed by a major thirteenth, followed by a neutral 

fourteenth (see Figure 14).5  Since these are the inverse intervals of the basic division of 

the octave as detailed above, the harmonies will be related to those described earlier.  To 

further clarify the shape of this alternate direction, they can be referred to as inwardly-

expanding, outwardly-contracting divisions, meaning that interval size quickly expands 

away from the root pitch and subsequently shrinks as it approaches the outer note. 

 
 

                                                
5. Haluska, xxiii. 
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FIGURE 14.  The resulting pitches from dividing a double octave upward by the 
geometric mean. 
 
 
 
Variations in Division 

The variations in outer interval size and division direction create a fairly large and 

diverse harmonic palette.  Coupled with changes in the root pitch, there is a seemingly 

endless combination of pitches and intervals.  However, in the experiments conducted 

dividing the octave, the possibility of other potential divisions could not go unexplored. 

Dividing the octave into three parts by the geometric mean results in reducing the 

outer interval by a third at every division.  The resulting interval is further divided into 

three parts and reduced by a third.  So, for example, to divide a double octave by thirds 

results in a major tenth, followed by a neutral seventh, followed by a perfect fifth, 

followed by a series of ever-diminishing microtonal intervals (see Figure 15). 

 
 
 

 
 
FIGURE 15.  The resulting pitches from dividing the double octave downward in thirds 
by the geometric mean. 
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 Variations in outer interval size and division direction can be applied to this type 

of division as well.  Compared to the harmonic language of half divisions, the harmonies 

of third divisions sound different, yet related because of the geometric process.  The inner 

pitches of half divisions (Db, E", F!) move dramatically upward in third divisions (G, Bb, 

E), expanding the lower intervals and contracting the upper intervals. 

 Geometric divisions can continue past half divisions, and third divisions, 

infinitely separating the outer interval into smaller and smaller pieces.  In Anomaly, I 

have chosen to continue the division process up through eighth divisions.  Appendix A 

contains an exhaustive visual explanation of each series of divisions, including fine detail 

of the microtonal fractions of a tone generated by this process.  As the divisions increase, 

there is a natural, step-wise progression away from the original sound world. 

 The formal structure of Anomaly is based on a series of increasing division 

variations.  As stated previously, the opening material comes from the basic half division 

of the span of the double octave.  As the piece progresses, the division type moves from 

half divisions, to third divisions, continuing through the subsequent possibilities before 

ending on eighth divisions.  Each stage in the progression of these divisions tends to mark 

a significant moment or a sectional demarcation in the piece.  An outline of these 

divisions with measure numbers is shown in Figure 16.  Given the multiplicity of 

variation and the resulting harmonic complexity, the necessity of the computer processing 

becomes evident.  It is that subject I will address next. 
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FIGURE 16.  The formal structure of Anomaly based on the intervallic division type. 
 
 
 
 

Function of the Processing 

In Anomaly the electronic computer processing has a multifaceted role.  On the 

one hand, the processing is of practical necessity.  Many of the harmonies produced by 

the division process are precise microtones, beyond the reasonable demands made of 

most performers.  The computer plays a role that it alone can fulfill by reproducing 

accurate microtones. 

The processing also plays a role as an augmentation of the flute.  Soon to be 

explained below, the sole source of electronic sound comes from a microphone attached 

to the flute.  The resulting processing sounds like a flute.  Even the dynamic and 

articulative inflections produced by the flute player will translate into the processed 

sound in real time.  Therefore, the processing in one sense can be though of as “flute 

plus.” 

The computer processing is not tethered to the flute part completely.  While the 

flute initiates all computer sounds, the flute source can be virtually frozen in time and 

stored to be played back independently.  All division processes can be applied to and 

triggered by a frozen sound just as if the flute were then playing that sound into the 
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microphone.  In this way, the role of the processing achieves a complex flute-dependent 

freedom that allows it to have its own voice in addition to augmenting the flute. 

Finally, the goal of the computer processing is to blend naturally with the 

ensemble.  In having an independent voice and creating flute-like timbres, the processing 

sounds and acts like an acoustic instrument.  The significant difference, however, is its 

ability to accomplish polyphonic microtonal pitch shifting.  In order fully to understand 

the processing, it is necessary to turn to the underlying programming, built in Cycling 

74’s Max/MSP. 

Description of the Max Patch 

I realized the computer processing in Anomaly though the visual programing 

environment of Cycling 74’s Max/MSP.  I built the patch in interconnecting modules that 

can be generally represented in a block diagram (see Figure 17). 

The patch has two inputs: an audio input to capture the flute’s sound via an 

attached microphone, and a MIDI data input to accept keyboard messages from a MIDI-

capable keyboard.  The audio from the flute first passes through a pitch detector module 

that analyzes the fundamental frequency of the incoming sound and sends that message to 

the division multipliers.  The audio continues through to the freezer module, which 

provides the ability either to let the audio pass through in real time, or to capture the 

spectral characteristics of one moment of sound and replay them, virtually freezing the 

sound.  The composer and programmer Jean-François Charles developed this method of 

freezing an audio signal using Jitter matrices to store FFT information.6  The flute audio,  

                                                
6. Jean-François Charles, “A Tutorial on Spectral Sound Processing Using 

Max/MSP and Jitter,” Computer Music Journal 32, no. 3 (Fall 2008): 100. 
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FIGURE 17.  A block diagram of the computer processing used in Anomaly. 
 
 
 
 
frozen or real-time, passes to fifteen individual pitch shifter modules.  Each of these pitch 

shifters is capable of taking the audio and changing its pitch without affecting playback 

speed.  The pitch shifters are also independent from each other, allowing fifteen different 

degrees of pitch shifting. 

In order to coordinate the precise, polyphonic pitch shifting that is required for 

Anomaly, a fairly complex mathematical equation takes the fundamental frequency 

message from the pitch detector, in tandem with MIDI keyboard messages, and produces 

fifteen different degrees of pitch shifting.  The three principal variables involved in the 

equation accomplish what has already been discussed in some detail above.  These three 

variables account for the outer interval size, the direction of the division of that outer 
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interval, and the division type.  They fit into a standard equation used to calculate a 

frequency a specific distance of semitones away from a given pitch (see Figure 18). 

 
 
 

 
 
FIGURE 18.  The mathematical equation used to account for each of the variables used in 
Anomaly. 
 
 
 
 

After passing through the pitch shifter, fifteen specific pitch shifted versions of 

the original audio are generated.  These are then gated and individually triggered when a 

corresponding MIDI note is received.  The patch can then output any of these 15 new 

pitches individually, or in any combination. 

Description of the Keyboard Layout 

Any standard MIDI keyboard can be used in conjunction with Max/MSP in this 

piece.  The primary function of the keyboard is to augment the expressive capabilities of 

the flutist by triggering particular pitch shifted versions of the flute’s sound in real time. 

The keyboard layout depicted in Figure 19 shows every functioning key.  The 

lower end of the keyboard has mode switches that change the direction of divisions 

(outwardly expanding, or outwardly contracting), the size of the outer interval, and the 

type of division (half divisions, third divisions, fourth divisions, etc).  The upper end of 

the keyboard has the individual division triggers.  Key C5 will reproduce the given pitch 

unaltered, while the keys on either side will shift the pitch up or down. 
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FIGURE 19.  A diagram of the keyboard’s layout by function. 
 
 
 
 

The diagram below (see Figure 20) gives an example of the resulting intervals 

when keys C2, G2, and B"3 have been pressed.  Note that these keys do not need to 

remain depressed and do not produce any sound by themselves since they are functioning 

only as switches for the patch. 
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FIGURE 20.  The resulting intervals when the keys C2, G2, and B"3 are pressed. 
 
 
 
 
The staff below (see Figure 21) shows the 15 possible resulting pitches if the flute plays 

C4.  Each of these pitches can be triggered one at a time, in multiples or all at once. 

 
 
 

 
 
FIGURE 21.  The resulting pitches when the keys C2, G2, and B"3 are pressed and the 
flute is playing a C4. 
 
 
 
 

The sustain pedal is responsible for switching between real-time processing and 

freezing a moment of sound in time and processing it for triggering later.  Pedal markings 
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in the piece must be strictly observed as they are crucial to capturing and reproducing 

specific pitches.  In addition, the keyboard player must pay careful attention to hand-foot 

coordination as Anomaly employs the pedal using non-traditional technique.  Finally, the 

expression pedal is used to attenuate the master output from the computer.  This adds an 

additional level of dynamic expression to the computer processing.  In short, Anomaly 

requires a highly skilled keyboardist who plays a central role as a performer in the piece. 

Realization of Microtones 

Anomaly makes limited use of microtones outside of the computer processing.  

The nature of the process driving the harmonic language demands the type of microtonal 

accuracy that is quite possibly beyond the reasonable capability of most performers.  

Given this dilemma, I had to consider what would produce the most effective solution.  In 

the case of Anomaly, the ensemble is spared from the rigor of producing these 

microtones.  Instead, the score uses the closest approximate equal tempered pitch.  

The score substitutes a careful selection of frequency-quantized pitches in place 

of microtones. Microtones closer to the upper end of a pitch are rounded upward, while 

microtones closer to the lower end of a pitch are rounded downward.  In the case of exact 

quarter-tones, both pitches surrounding the quarter-tone are used.  For example, given a 

D4 a third-tone sharp, the pitch will be quantized down to an equal-tempered D4. If, on 

the other hand, the D4 is two-thirds of a tone sharp, the quantized equal-tempered pitch 

will be moved up to an E"4.  In the special case that the D4 is exactly a quarter-tone 

sharp, the pitch will be split into an equal-tempered D4 and E"4 (see Figure 22). 
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FIGURE 22.  Three microtones are frequency-quantized to equal-tempered pitches. 
 
 
 
 
 In this way, the pitch material in Anomaly is approximately built from the precise, 

pitch-shifting calculations done in the computer processing.  Due to this disparity 

between precision and approximation, the piece embodies a sort of tension that could 

easily become overwhelmed in dissonance.  However, special attention has been given to 

the orchestration of the piece to avoid direct conflict between a precise pitch and its 

approximate equivalent.  The resulting sonic world created by this geometric division 

process and its computer-assisted realization creates something that is, in a way, an 

extension of harmonic reality itself. 
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CHAPTER 4 

ANOMALY AS AN EXTENSION OF SPECTRALISM 

Now that I have presented the theoretical background and practical 

implementation of Anomaly, I will argue that the piece is closely aligned with some of the 

tenets held by composers associated with the spectral movement.  After a brief overview 

of spectralism, I will compare my composing philosophy with that of the so-called 

spectralists. 

Spectralism 

Before relating Anomaly to spectralism, a brief historical survey of the movement 

is required.  Due to the relatively recent emergence of spectralism, the philosophies 

shared by its proponents are still evolving.  One hallmark trait of the movement is a 

fascination with perception, which typically manifests itself in an exploration of the 

acoustic properties of sound and the malleability of time.1 The interest in sound’s 

inherent properties is nothing new, as other critics and music historians have pointed out, 

“The attempt to relate musico-cultural activity to (supposedly) natural laws of acoustics 

has been a mainstay of musical theory since the time of the ancient Greeks.”2  However, a 

key difference in the birth of spectralism was the availability of technology that could 

analyze and resynthesize a sound.  In fact, the link between technological development 

                                                
1. Julian Anderson, “A Provisional History of Spectral Music,” Contemporary 

Music Review 19, no. 2 (2000): 7–8. 
 
2. Ibid., 8.  
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and musical aesthetics was so closely linked at this time, that a new term, compositeur en 

recherche, describing a composer-as-scientist, was proposed to account for the growing 

reliance on computer-aided composition.3 

The exploration of the acoustic properties of sound by spectral composers such as 

Gérard Grisey and Tristan Murail in the mid-1970s relied on the development of the 

spectrogram, which, by using the Fast Fourier Transform function, or FFT, could break 

down a complex sound into its individual sinusoidal components.4  In this way, a sound’s 

spectrum can be described in terms of a fundamental and overtones, regardless of the 

complexity of the sound.  Grisey and Murail used the relationships in the overtone series 

as their foundational pitch material, taking the musical property of timbre and making it 

the focus of their compositions.5  Composers preceding spectralism, such as Stockhausen, 

Scelsi, Messiaen, and Varèse, all experimented with the centrality of timbre,6 but Grisey 

was arguably the first to blur the lines between timbre and harmony in his monumental 

work Les éspaces acoustiques.7  Eleven years in the making and composed of six 

movements that can be played together or separately, Grisey built Les éspaces 

                                                
3. Eric Daubresse and Gérard Assayag, “Technology and Creation—The Creative 

Evolution,” trans. Joshua Fineberg, Contemporary Music Review 19, no. 2 (2000): 64. 
 
4. Jont B. Allen and Lawrence R. Rabiner, “A Unified Approach to Short-Time 

Fourier Analysis and Synthesis,” Proceedings of the IEEE 65, no. 11 (November 1977): 
1558. 

 
5. François Rose, “Introduction to the Pitch Organization of French Spectral 

Music,” Perspectives of New Music 34, no. 2 (Summer 1996): 6–7.  
 
6. Anderson, “Provisional History,” 8–14. 
 
7. Julian Anderson, “Gérard Grisey,” in The New Grove Dictionary of Music and 

Musicians, 2nd ed. (London: Macmillan, 2001), 10:428–9. 
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acoustiques upon the central idea of exploring acoustical timbres by orchestrating their 

spectral components.  Les éspaces acoustiques is one of the principal works of 

spectralism and makes for a suitable comparison to Anomaly in terms of its aesthetic 

point of view. 

Working in Overtones 

At this point, I will give careful consideration to the terms “harmonic” and 

“overtone.”  Harmonics should be understood to be frequencies above a fundamental that 

are related to the fundamental in simple whole number ratios. 8  Given a fundamental 

frequency of 100 Hz, the frequencies 200 Hz, 300 Hz, and 400 Hz would all be 

considered harmonics.  Overtones, on the other hand, have the much broader definition of 

any frequency component of a sound above the fundamental.9 Overtones take into 

account the idea of inharmonicity, that is, intervallic ratios that cannot be expressed by 

whole number ratios. 10  Under this broader definition, intervals created by irrational 

ratios as described earlier and used in Anomaly, can be thought of as overtones. 

Harmonics 

One of the fundamental tenets of spectralism is an adherence to the acoustic 

properties of sound.  The opening material of Partiels, one of the central movements of 

Les éspaces acoustiques, is often used as the prime example of this, being based on the 

                                                
8. Guy Oldham, Murray Campbell, and Clive Greated, “Harmonics,” in The New 

Grove Dictionary of Music and Musicians, 2nd ed. (London: Macmillan, 2001), 10:854. 
 
9. Murray Campbell, “Overtones,” in The New Grove Dictionary of Music and 

Musicians, 2nd ed. (London: Macmillan, 2001), 18:821. 
 
10. Rose, 9. 
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spectral properties of a trombone’s lowest E.11  Harmonic components present in the 

sound of the fundamental E are written into the parts of the ensemble.  Figure 23 shows 

Grisey’s orchestration of the trombone’s timbre.  The natural phenomena of the harmonic 

series becomes the genesis of an entire sound world. 

 
 
 

 
 
FIGURE 23.  Grisey’s orchestration of the trombone’s spectral components in Partiels. 
 
 
 
 

Working with a given fundamental and generating pitches upward is not Grisey’s 

only method of deriving material for his piece.  The span of the frequency range can be 

staggering given the large intervals close to the fundamental.  Unless the fundamental is 

significantly low, the tessitura in which many of the closely spaced upper harmonics 

occupy will be stratospheric.  For this reason, Grisey developed techniques that generate 

material which exhibits a great deal of harmonicity without technically being harmonic.  

                                                
11. Ibid., 8–9. 
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In other words, while the central concept of spectralism in Les éspaces acoustiques lies in 

its adherence to the harmonic series, much of its actual content is better expressed as 

overtones. 

Overtones 

Many of the techniques used in creating inharmonic overtones find their origins in 

electronic procedures that have been adapted for acoustic instruments.12  This is not 

surprising given the link between the development of spectralism and the emergence of 

computer-aided acoustic analysis.  Some examples of electronically derived procedures 

that have been adapted for acoustic composition include ring modulation and frequency 

modulation. 

Another process used by Grisey involves creating virtual fundamentals for a given 

set of sounds.  Because the harmonic series continues upward in ever-smaller intervals, 

any group of pitches can be related to one another by a fundamental frequency, which is 

sometimes a very low pitch.13  This fundamental is called virtual because it is arguable 

whether or not it can be perceived by a listener, and it is often unable to be sounded by an 

instrument in the correct octave.  Composers have used this methodology to generate 

material that is spectral and related to the harmonic series for their pieces, even though 

the relation is one that is artificially constructed and difficult, if not impossible, to hear. 

The concept of a virtual fundamental is not critically flawed, however.  While the 

typical measure used to judge perceptibility is the natural harmonic series, there is no 

                                                
12. Ibid., 11. 
 
13. Joshua Fineberg, “Guide to the Basic Concepts and Techniques of Spectral 

Music,” Contemporary Music Review 19, no. 2 (2000): 98. 
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guarantee that this is the only spectrum for which the ear has an affinity.  An artificial 

spectrum, one not naturally occurring but generated by a computer algorithm or a 

composer’s imagination, allows for any sort of inharmonic relationship.14  These 

relationships are instead dependent on our definition of overtones and, again, often result 

from electronically derived procedures.  One example of an artificial spectrum is the 

subharmonic series wherein the intervallic relationships of the harmonic series are 

inverted and overtones are created below a given fundamental.15 

It is fitting, then, to call the process involved in Anomaly one that is capable of 

generating types of artificial spectra.  A given pitch to be processed can be understood in 

some sense to be a fundamental, upon which the upward divisions are built.  These 

resulting pitches are overtones in that their frequencies are related through the geometric 

mean to the fundamental.  The inverse process of generating pitches downward is 

analogous to the artificial spectrum of the subharmonic series.  Both operations simply 

take a series and mirror the generated intervals above or below the fundamental.  The 

central point in aligning Anomaly with spectral thinking is the shared application of 

overtones as produced by an electronically derived process. 

Working in Extended Time 

Dissecting and reconstructing the spectral elements of a sound is only one 

technique used by spectral composers.  As Grisey said in a 1996 interview, “The 

departure point of spectralism was . . . the fascination for extended time and for 

continuity . . . .  That is really the starting point of spectralism and not the writing of 

                                                
14. Ibid., 92–3. 
 
15. Rose, 15–6. 
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spectrums or whatever.”16  In Grisey’s assessment, the true focus of spectralism lies in the 

exploration of time as something that could be dilated and stretched.  In fact, in his 1980 

lecture at Darmstadt entitled “Tempus ex Machina: A Composer’s Reflections on Musical 

Time,” Grisey elaborates on an embodied time, composed of a skeleton, flesh, and skin.17   

Grisey’s fascination with time and the methods he employed have some bearing on time 

elements in Anomaly. 

Proportional Time 

Aside from a brief introduction, the entire opening half of Anomaly takes place in 

either unmetered or proportional time.  The extended flute and electronic solo section 

lacks any concrete tempo indication.  In some ways very similar to a cadenza, the flute 

and electronics have a rhythmic free will.  The notation is spaced in such a way to 

indicate quicker rhythmic activity when note heads are closer together and slower activity 

when further apart.  This notation is similar to Grisey’s notation for his Prologue for Solo 

Viola, the opening movement of Les éspaces acoustiques.  Beamed notes indicate phrase 

markings and breath markings indicate shorter and longer pauses between phrases. 

A type of measured proportional notation is implemented in Anomaly when the 

ensemble enters on the downbeat of measure 26.  Barlines represent passing seconds and 

are bounded by darker barlines into groups of seconds (see Figure 24). 

 

                                                
16. David Bundler, “Interview with Gérard Grisey,” Musical Time Articles, 

Interviews, and Essays, http://www.angelfire.com/music2/davidbundler/grisey.html 
(accessed January 28, 2012). 

 
17. Gérald Grisey, “Tempus ex Machina: A Composer’s Reflections on Musical 

Time,” trans. S. Welbourn, Contemporary Music Review 2 (1987): 241. 
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FIGURE 24.  Measure 26 from Anomaly showing an example of the proportional 
notation. 
 
 
 
 
The performer is given pitches whose durations are relative to their horizontal placement 

in the measure.  In much the same way, Grisey uses familiar time signatures with 

proportional notation in Partiels.  In this way, the rhythmic gestures are freed from 

traditional measured constraints. 

The use of unmetered and proportional time in Anomaly is to present the listener 

music that, “treats [time] as a constituent element of sound itself.”18  The collective result 

is a sonic mass that expands, contracts, and moves nebulously within the chronological 

time frame.  Time seems to stand still, go backward, and suddenly rush forward. 

Strict Time 

The technique of strict, or traditionally metered time, acts as bookends 

in Anomaly, surrounding a large section of unmetered time.  While seemingly ordinary in 

function, the metered notation serves two distinctly different functions in relation to the 

proportional time.  First, the strict time acts as a foil to the unmetered time.  Where the 

                                                
18. Gérald Grisey, “Did You Say Spectral?,” trans. Joshua Fineberg, 

Contemporary Music Review 19, no. 3 (2000): 1. 
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proportional notation allows some rhythmic ambiguity and room for performer 

interpretation, the metered time must be exactingly precise.  The section beginning at 

measure 74 demands a rigorous adherence to the newly introduced metered notation (see 

Figure 25).  The strict time here helps provide a contrast to the previous section of 

 
 
 

 
 
FIGURE 25.  Measures 88–89 in Anomaly showing an example of the strict time.  
 
 
 
 
proportional time.  Secondly, the sections of strict time near the end of the piece imitate 

the gestures of the earlier proportional time.  In this way, the Anomaly makes certain 

rhythmic connections between two separate sections of the piece that use two different 

approaches to time.  The result is something other than direct imitation or variation; the 

gesture remains the same, but the context changes.  Using two methods of notating 
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similar rhythmic material indicates a development of time as progressively changing over 

the course of the entire work. 

Progressive Time 

On a macro level, Anomaly exhibits a distinctly spectral view of time as 

something that can be expanded and contracted.  A sense of time as a progression 

develops from the beginning of the piece, starting from the unmetered stillness of the 

flute and electronic solo.  Rhythmic activity in the flute increases in complexity before 

the ensemble joins in a chronometrically based proportional sound collage (see Figure 

26).  Around measure 38, the amorphous texture produced by the ensemble begins to 

clarify in entrance and gesture.  The punctuated attacks at measure 51 point towards a 

more organized sense of rhythm while continuing to obscure a real pulse (see Figure 27).  

Finally, the accelerando into measure 74 intensifies the arrival of a solid metrical 

grounding.  The remainder of the piece can be heard as a continual push from strict time 

into a sense of time that rushes wildly forward, sounding less and less under tight control.  

The progress of time in the piece in sum is a dynamic excitation, building up from 

stillness, to control, to the edge of control, before approaching stillness once again. 
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FIGURE 26.  Measures 30–31 in Anomaly showing how proportional time assists in 
creating a nebulous sound mass. 
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FIGURE 27.  Measures 53–54 in Anomaly showing a progressive development of 
rhythmic precision. 
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CHAPTER 5 

CONCLUSION 

The ancient paradigm of the Pythagorean division of the octave by the harmonic 

mean established the way for future musical developments.  At first, it emboldened early 

music theorists to proclaim the perfection of the fourth and fifth.  It helped segment the 

octave into equal parts resulting in scalar systems such as the Greater Perfect System and 

modal church systems.  Later, it gave rise to tonic-dominant relationships and tonality. 

The effects of the harmonic division are far-reaching, but in the end, they are just 

one paradigm, reinforced by many composers and music theorists over centuries.  

Referring to change within scientific paradigms, philosopher Thomas Kuhn said, “The 

more precise and far-reaching [a] paradigm is, the more sensitive an indicator it provides 

of anomaly and hence of an occasion for paradigm change.”1 The twentieth century has 

proven to be such an occasion for large-scale change in musical paradigms.  Viewing all 

musical elements through a spectral lens is one example of a relatively recent shift in 

paradigm. 

The purpose of presenting the subjects in this paper in relation to Anomaly is to 

highlight the anomalous nature of the geometric mean and show that its theoretical 

implications are musically viable.  The octave lies in the vast continuum of frequency 

space, and just as Pythagoras and his followers explored the nature of sound itself, we too

                                                
1. Kuhn, 65. 
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are able to mine this space for new divisions.  Anomaly shows that incommensurability of 

the geometric division of the octave, while rejected for the large part of Western music, is 

ripe with new musical possibilities.
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APPENDIX A 

ILLUSTRATED DESCRIPTION OF DIVISION TYPES
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Half Divisions 
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Third Divisions 
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Fourth Divisions 
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Fifth Divisions 
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Sixth Divisions 
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Seventh Divisions 
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Eighth Divisions 
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APPENDIX B 

RECITAL PROGRAM
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